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The problem of sedimentation of a homogeneous suspension of spherical drops 
at low Reynolds numbers and moderate concentrations of the dispersed phase 
is considered. Equations that define the flow past a single drop of a system are 
derived using the theory of generalized functions and of averaging over the 
ensemble of positions of particle centers, with the binary correlation function 
derived in [l] taken into account, These equations make possible the deter- 
mination of the force acting on an individual particle and the rate of their 
sedimentation depending on their volume concentration. 

A considerable number of publications deals with the effect of volume concentration 
on the precipitation rate of a suspension of spherical particles (see the survey in [2 1). 
The majority of theoretical inve&gati@ns is based on the assumption of Stokes flow, 
the results of which relate to low volume concentration of the dispersed phase. Corn - 
parison of calculation results with known experimental data considered in [3] is only 
possible for moderately concentrated suspensions. 

Theoretical determination of the precipitation rate of spherical drop suspension of 
moderate and high volume concentrations necessitates the knowledge of the binary cor- 
relation function structure. 

An attempt was made in [4] at the determination of the precipitation rate of a 
diluted suspension with allowance for hydrodynamic interaction between solid spheres. 
The use in that work of the solution of the problem about the interaction between two 
isolated spheres seems to be insufficiently substantiated, since the interaction between 
two spheres in a diluted suspension is somewhat different from that between two isolated 
spheres. Generalization of results obtained for moderately concentrated suspensions by 
analyzing the interaction between three or more particles is, apparently, impossible 
owing to considerable mathematical difficulties. 

The binary correlation function used in calculations in the majority of investigations 
was in the form of a step, which is a zero approximation and is only suitable for de - 
fining the properties of diluted systems. An exception is the investigation in which the 
binary correlation mnction was determined by the solution of the Licuville equation for 
a pair of isolated spheres in a pure deformation stream 151. A very rough approximation 
of the binary function, suitable only for qualitative analysis was used in [6 1. 

1. The flow around a spherical in a translational stream.Let 
us consider the problem of flow of a uniform translational stream of viscous incom - 
pressible fluid, defined by conventional Stokes linear equations, past a spherical par- 
ticle of radius a . We locate the origin of a Cartesian system of coordinates at the 
particle center, with the direction of the z -axis coinciding with the direction of the 
fluid velocity vector away from the particle. We, also, introduce a system of spherical 
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coordinates (r, 8, cp) attached to the particle center; 8 is the angle between the 
radius vector x and the positive direction of the z -axis. The equations for the fields 
of velocity v and pressure p are of the form 

pAv = vp, divv = 0, IXI>~ (1.1) 

v-+uo, IxI*~ 

Below we use dimensionless variables defined by formulas 

u+, r=$, U” 
0 

PC-g, ug=- 
UO 

(1.2) 

Solution of Eqs. (1.1) converted to dimensionless form that, in particular corres - 
ponds to a uniform translational stream at infinity, can be expressed as follows: 

u = &F’(r) + (uo-r) G(r), P = (uo.r) H’(r) (1.3) 

G’(r) = -_A’+ $+$ H’(r) = 20A’ + s 

where A’*, B’, C’ , and D’ are some constants determined by related boundary 
conditions. The condition at infinity can be satisfied by selecting A’ = 0 and 

B’ = l/2. However for the subsequent definition of the averaged fluid motion in 
the particle neighborhood in the suspension the more general formulas adduced above 
will be required for II and P. 

Fields u and P specified by formulas (1.3 ) identically satisfy Eqs. (1.1) in 
dimensionless form throughaut the region r > 0. However in the extended region 
that includes point r = 0 the result of applying the operations A, div and V 
to(1.3)isasfollows: 

A&& 
i 

=: - 8nC'uoi6 (r) - 4nuojD’hq’ 
i i 

div u = - 41cD’u,,~ aa (r) az 
j 

(1.4) 

(1.5) 

where 6 (r) is a three-dimensiqnal delta function and Zi are Cartesian coordinates. 
The appearance of terms D’ in the right-hand sides of &s. (1.4) and (1.5) is 

due to the finiteness of the particle radius. If point particle are considered, as in [7 1, 
these terms vanish and instead of (1.5) we have div u = 0. Note that the difference 
between formulas (1.4) and (1.5) and the similar formulas in [7] is due to the artificial 
choice in [7] of velocity and pressure fields so as to identically satisfy the equation of 
continuity in the set of generalized functions. 

Taking into account (1.5 ) and the relationships rot rot u = V div u - Au , 
Eq. (1.4 ) can be reduced to the form 

r,& rot u + VP = 8nClu,6 (r) (1.6) 

8. GorrrlrtLon functiona. The device of correlation functions is used 
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below for the derivation of averaged equations that define the interaction between the 
sample point and the surrounding fluid. We denote by RN the set of radius vectors 

(rr, r2, . . ., v) of particle centers, by fN (RN; 0) the N -partial conditional 
correlation function, and by fr (r), fs (rl, r2) and fi (r,; rs) the unary , binary, 
and the conditional unary correlation functions, respectively, According to the theorem 
of multiplication of probabilities 

fa (rr, r2) = fl (r2) fl h r2) 

f~ (RN; 0) = fl (rl; 0) f~--1 (RN-~; rlr 0) 

(2.1) 

Various methods of correlation function normalization are available. Here we as- 
sume that the equalities 

+ 1 lN (RN; 0) URN = 1 (2.2) 

1 a 
-\fiv-l(RN-1; rl, O)~RN-~ = 1 b’N-1 

are satisfied, i, e. the introduced functions are dimensionless. 

Since the system considered here is spatially homogeneous fl (r) 3 1 and,in 

conformity with (2.1) , the binary correlation function is the same as the conditional 
unary function, Furthermore we assume that the particle distribution in the neighbor- 
hood of the sample particle is spherically symmetric. Hence 

fs (rr, rs) = g (r& r12 = I b - f2 I 

Function g (r) depends only on distance between particle centers and is indepen- 
dent of angle variables. 

8. Derivation of averaged equations. Let us consider the sediment- 
ation in a suspension of N + 1 (N > 1) spherical drops of fluid of viscosityP p” 
in a fluid of viscosity CL. The sedimentation rate depends on the dimension and shape 
of particles, the difference between the weight and the ejecting force, and also on the 
volume concentration of particles ‘ In the case considered here of spherical particles 
the sedimentation rate is proportional to excess of weight, and otherwise depends on 
the volume concentration [4], We assume that the suspension is statistically homo - 
geneous and contained in volume V whose characteristic linear dimension consid - 

erably exceeds the average distance between particles. We choose a sample particle 
and locate the origin of a Cartesian coordinate system at the center of that particle. 
We denote by U the velocity of the stream flowing onto the sample particle in a 
system of point particles. 

The flow around the sample particle is analyzed using the dimensionless variables 
defined by formulas (1.2) in which the so far unknown velocity U is substituted for 

velocity U0 . The velocity and pressure fields in the sample particle neighborhood 

are assumed to be of the form (1.3 ) as in the case of a single particle. But the co - 
efficients A’, B’, C’, and D’ are considered to be known beforehand and dependent 
on the volume concentration of particles. 

Using Eqs. (1.5) and (1.6 ) we can write 
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rot rot u + \T7 P = 8X i C,‘U06 (r - r,) 
n=z1 

N 

div u = - 4n 
c Dn’uoj 2 6 (r - G> 
?a=1 .I 
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(3.1) 

where r is the observed point and r, are points of particle centers. In a statistically 
homogeneous system the coefficients C,’ and D,’ are the same for all particles 
and equal to C’ and D’ , respectively. 

We average Eqs. (3.1) using function fN (RN; 0) and taking into account pro- 
perties of correlation functions (2.1) and (2.2). 

In the right-hand sides of (3.1) we have 

<~S(‘-“)>=~~sfN(RN;O)S(r-r.)dRN= (3.2) 

n=i n=i 
N 

1 

VN cs 
fl (r’; 0) fN_1 (RN-~; r’, 0) 6 (r - %) URN = 

n=1 

n fl(r’; O)d(r-r’)dr’= rig(r)) s 

< 

N- 

2 uo.V6(r-rr,))=nuo~g(r) 
?a:=1 

where (and in what follows ) angle brackets denotequanti:tes averaged over the ensemble. 
Note that formulas (3.2) are in no way based on any assumptions as regards low 

volume concentration of particles. 
The substitution of points for particles must be taken into account by suitable equa- 

tions for the determination of the binary correlation function. 
The binary correlation function g (F) is discontinuous at r = 2 . Using the rule 

of differentiation of discontinuous functions [8] we obtain 

(UO.Vg)=(u~.n)~+[gls(u,.n)6(F--) (3.3) 

where n is the unit vector of the outer normal of the sphere concentric with the 
sample particle, [glS = g (2) is the jump of the g -function at passing the 
sphere F = 2, and 6 (r - 2) is a univariate delta function. 

Using (3.2) and (3.3 ) we obtain from Eqs. (3.1) in region F > 1 the following 

equations ; 

rot rot <u> + V(P) = GcC’u,g (F) 

div(u) = - 3cD’ (uO. n) [g + g (2) 6 (F - 2)] 

(3.4) 

(3.5) 

The surface of sphere F = 2 is th e d iscontinuity surface of the particle number 

density. In region 1 < r < 2 that does not contain centers of particles surrounding 

the sample, Eqs. (3.4) and (3.5) reduce to ordinary Stokes equations.Inregion r > 2 
the right-hand sides of (3.4) and (3.5) retain the terms which define the effect of 



110 A. M . dolovin and V. E. Chizhov 

particles whose centers are in that region. Equations (3.4) and (3.5) define the motion 
of an individual drop in a certain effective flow field produced by surrounding particles. 

Below we denote quantities in region 1 ( r < 2 by a prime, while those in 
region r > 2 appear without primes. It follows from Eq. (3.5) that the radial com- 
ponent of the averaged velocity vector 

<U,) - <U,‘> = -3cD’g (2) (3.8) 

is discontinuous at the surface of sphere r=2. 
Note that the appearance of discontinuities in the velocity and stress fields at the 

discontinuity surface of quantity c in suspensions of solid particles was indicated in 
[9 1, where a different problem of the motion of neutral floating particles free of the 
action of external forces was considered. 

Equation (3.4) implies that the averaged pressure and vorticity rot (u) are 
everywhere, including the surface r = 2, continuous, hence 

(P> = (P’>, rot (u, = rot (u’>, r=2 (3.7 1 

To prove these relationships we write Eq. (3.4) in the form of projections on the 
basis vectors of the spherical system of coordinates 

&-$(rot(u))psin6 + F = GcC’gcos0 

+ $r (rot (u)), - f -%$ = 6cC’g sin 0 

(3.8 1 

The second of Bqs. (3.8 ) makes it possible to state that rot (u) is continuous, 

if the pressure is continuous or, when discontinuous, remains bounded. But then incon- 
formity with the first of these equations it is possible to establish the continuity of 

pressure <P> . 
The continuity of vorticity at the surface r = 2 implies the continuity of the 

tangential velocity component at that surface 

Cue) = (W’), r=2 (3.9) 

Away from the sample particle we have 

<u> - UO? r--+00 (3.10 ) 

which corresponds to a homogeneous stream flowing onto the particle. 

4. Daterminrtion of the ssdlmentotlon rata of rurpcnsion. 
Let us consider the problem of the flow of a fluid defined by Bqs. (3.4) and (3.5 > a- 
round a spherical drop. The quantities related to the fluid inside the drop will be de- 
noted by two primes. These quantities are reduced to the dimensionless form by formulas 
(1.2),except that pressure <P”> is related to IL” instead of p . The equations 

of motion of fluid inside the drop are similar to Bqs. (1.1) , i. e. 

A(u”) = v(P”), div (u”) = 0 

and the boundary conditions at the drop surface r = 1 are 

(4.1) 
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(I.&‘) = (u,“) = 0, (ue’) = (ue”) (4.2) 

G( 240”) -- (ue”) = ) -g (us’) - (UG), 

The solution of Eqs. (3.4) and (3.5) that correspond to a homogeneous translational. 
flow at infinity is of the form (1.3 ). Similarly for r ( 1 

(u”) = uoF”(r) + (uo.r)rG”(r) 
(4.3) 

(P”) = (uO.r)H”(r) 

F” (r) = 4A”ra + 2B”, G” (r) = - 2A”, H” (r) = 20A” 

where it is taken into,account that 1 d 1 ( oo when r = 0. 
In region of r > 2 the fields <u> and * (P> of the form (1.3 ) and (4.3 ) 

reduce Eqs. (3.4) and (3.5) to the following system of ordinary differential equations 
for the determination of functions I?, G , and H : 

g+ $g+2G-H = -6cC’g-3cD’+g 

dG dH 1 daF 1 dF _-- 
dr dr =rdra--TF 

+%+4G+r $-= -3cD’$s 

(4.4) 

The general solution of the linear nonhomogeneous system of Eqs. (4.4) with al - 
lowance for G (r) +O when r-too isoftheform 

+ r 

F(r)=2B+G--$--33cD’(g-I)-{Wdr-Ssdr (4.5) 
2 2 

Ra (r) G(r)=$-+T+w-- 
2,s 

R1 (r) = f r%Q (r) dr, Ra (r) = fr4Q (r) dr 
a 9 

Q(r)= 6cC’[g(r)-l]-3cD’($$+Gs) 

Taking into account that g (r) tends exponentially to unity when r 3 00 from 
condition (3.10 ) we obtain the constant B 

B= -&+2cC’I+cD’[g(2)-1 + 291 (4.6) 

I= ir[g(r)--l]dr 
a 

Boundary conditions (4.2) and conditions (3.6 ), (3.7 ), and (3.9 ) at the discon - 
tinuity surface of the particle number yield for the determination of unknown coef- 
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ficients in the velocity and pressure fields the following system of linear equations: 

A’ + B’ + C’ + D’ = 0, 4A’ + 2B’ + C’ - D’ = v,, 

16A’ + 2B’ + V2 (C’ - C) - l/s (D’ -D) = 2B - 3cD’ [g 
11 

2A’ - Vs (C’ - C) - 3/32 (D’ - D) = -3/4cD’g (2) 

20A’ + l/b (C’ - C) = 6cC’ + 3/2cD’g (2) 

20A’ _ ; (Cl- C) = - 3cD’ T 

A” + B” = 0, 4A” + 2B” = v. 
GA” = A’ + D’, <ue”) = -v. sin 8 

(4.7 1 

(2) - 

where the supplementary quantity v,, relates to the tangential velocity component on 
surface r = 1. 

Solution of the system of Eqs. (4.7 ) yields 

C’ = - 3 - 2v, - V& 
4-23c+12cI+0.4c2 (4.8 1 

D’ = - 1/3 (1 - “/5c) C’ - 1/3vo 

v. = $1 -c)[l -4c+2cZ - 

1 -p2+o 1 +++cI+++ 
( 11 

-’ 

For the determination of force F acting on the particle it is necessary to know 
only C' , since F = -&cc’ to which in dimensional quantities corresponds 

F = -8npaC’U. That force is equal to the drag of a single settling particle 

F = 2nyal7, (2 + 30) / (1 + a) 

Comparison of these formulas shows that 

lJ 1 2 + 35 _=_-- 
u0 4C’ 1 +c 

(4.9) 

Let U, and Uf denote, respectively, the rate of suspension sedimentation and 
the fluid velocity in a reference system where the mean volume velocity is 
(1 - c)Uf = 0. The previously introduced velocity flowing 

cU, + 
U onto the sample 

particle in the system of point particles is related to the relative fluid velocity in a 
system of particles of finite dimensions is related by the formula 

Uf__U _ I--c(<;;‘) .U”) u 
P- l-c 

where <ii’> is the velocity field averaged over the volume of the sample particle determined 
by formula (1.3) and formally continued into the unit radius sphere. 

It can be shown that ((ii’>~u,) = -30’ , from which follows that 

u, = --_(I + 3cD’)U, U, = (1 + 3cD’)cU / (1 - c) 
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Thus the suspension sedimentation rate is 

u i 2+35 P 4-223cf 12~1 +0.4ca 

u, -77q7 3 - 2v, - ugc (I-cEUO)+c(l -SC)] (4.10) 

Formula (4.10 ) makes possible the determination of the suspension sedimentation 
rate U, depending on the particle volume concentration c. Note that the ratio 

U, / U, depends on the binary correlation function g (r) only through the in - 

tegral I introduced in (4.6 ). 

Convergence of that integral was investigated in [l] , where it was established that 
g (r) exponentially rapidly tends to unity when f + 00. 

It was also noted in [l ] that the two-term expansion of g (r) in series in small C 

is of the form 

g (T) = 
1 -t_c(8-- 3r + llisr3), 2 < r < 4 

1, r>4 

For small c that formula yields 

I = V$ (4. II ) 

Using formula (4.10 ) it is possible to analytically determine the suspension sedi - 
mentation rate with an accuracy to within terms of order ca. For suspensions of 

solid spheres (ua = 0) we have 
u* I ua = 1 - 5c + 13s (4.12 ) 

A considerable number of investigations surveyed in [3 ] is devoted to the deter - 
mination of the sedimentation rate of spatially homogeneous suspension of spherical 

particles randomly distributed in a fluid. The following empirical formula was proposed 

there ; 
Up I U, = (1 - c)“, n z 5 (4.13 ) 

which is in satisfactory agreement with (4.12) to within terms of order c8 for n = 5 

I 

0 005 0. f Of5 o c 

Fig. 1 

The use of the binary correlation 
function in the form of a two-term 

expansion is justified only for small 
c. Function g (r) was obtainedin 

[l] by numerical calculations in 
the range of small and moderate 
values of c from 0 to 0.2. It 
made possible to determine 1 and 
obtain the ratio Up I U,, in that 
range. The dependence of the cal- 
culated ratio UQ / U. on volume 
concentration is shown in Fig. 1. 
Curve 1 corresponds to the linear 
formula Up I I/,,= i-5 c and curve 
2 to the quadratic formula (4.12 ) . 
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Curve 3 represents the ratio Ii11 1 ua numerically calculated using the binary co - 
reiation function determined in [l] , and the small circles relate to experimental data 

determined in [3 ] which correspond to values of exponent n equal 4.8, 5.0, and 
5.6 in formula (4.13 ). It will be seen that numerically determined values of the ratio 

UP / u,, are in satisfactory agreement with the indicated experimental data. 

It should be noted that these results are inapplicable for defining suspension sedi - 
mentation in the presence of clustering and in the case of orderly distribution of part- 
icles . 

In conclusion let us consider the asymptotics of ur, I lJ0 - 1 when c - 0. 

Three points of view on the dependence of that expression on c appear to exist in 
literature. Formula (4.12) derived here implies that for small c lir, I U0 - 1 - c. 

The same dependence on c was obtained in [4] using the method based on the 

calculation of the difference between two divergent integrals, but the coefficient 6.55 
at c derived there differs somewhat from the one obtained here, It can be shown, 
however, that, if in [4] and the present paper all particles, except the sample, were 
assumed to be point particles, both results would be the same: Up / U,, = 1-5.5~. 
The difference is due to the omission of taking into account that particles are not points 

and, also , to the rather incorrect allowance in [4] for the interaction between two 
isolated spheres, as indicated in the introduction. 

With ordered distribution of spheres and in models of cells the dependence of sedi- 

mentation rate on concentration is, as shown in [2 1, different ; UZ, / U. - 1 - c”~. 

Dependence of that kind, as indicated in [4], is natural in problems in which one or 
another kind of boundary conditions are specified at distances of order a~-*‘~ from the 
center of the sample particle. With the random distribution of spheres, considered here 

and in [4], there is no similar linear scale, and this results in a different dependence 

of Up t U. - 1 on c. This subject is considered in greater detail in [4]. 

An attempt at a theoretical substantiation of Brinkman’s formula [ll] for the ratio 

UP 1 uo was made in [lo]. It was shown in [13 ] that at the limit c --f 0 

UT,/ ill-- 1 - 1/i- (4.14) 

A similar dependence was obtained in [ 12,13 1, where the terms next following 
with respect to concentration in the expansion of Up I U. were also determined. It 

was shown in [7 ] that the problem considered in [ 10 - 12 ] corresponds to filtration of 
fluid through a stationary layer of spherical particles with random, but fixed positions 

of their centers. In that case the velocity of all particles is the same, and the force 
acting on each particle is the random quantity, In the problem of free sedimentation 

the force acting on each particle is known and the same for all particles, hence for- 
mula (4.14) is unsuitable for defining the sedimentation of suspension under the action 
of the force of gravity. 

The authors thank G, I. Petrov and the participants of the seminar directed by him 
for useful comments. 
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